Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 2586-2594, 2020.
Article in Chinese | WPRIM | ID: wpr-828041

ABSTRACT

Corydalis Bungeanae Herba is often used to treat a variety of inflammatory diseases in traditional Chinese medicine. In order to determine its chemical material basis, the components of Corydalis Bungeanae Herba were isolated by automated purification system. Flavonoids and alkaloids were prepared, and all such components were identified by mass spectrometry. The effects of the components on the production of inflammatory mediators and pharmacological mechanisms in the lipopolysaccharide(LPS)-induced RAW264.7 cell inflammation model were examined. Mouse macrophages(RAW264.7) were first treated with LPS. The relationship between cell viability and LPS concentration was observed. Then, the effects of flavonoids components and alkaloid components with different administration concentrations on cell viability were detected to determine the maximum administration concentration. Secondly, 2.5, 5, 10 and 20 μg·mL~(-1) flavonoids components and alkaloid components were added respectively to observe the effects and mechanism of different concentrations of flavonoids components and alkaloid components on LPS-induced inflammation of RAW264.7 macrophages. Griess reagent assay was used to detect NO content in cell supernatant. The inflammatory cytokines(TNF-α, IL-1β and IL-6) in cell supernatant were determined by ELISA method. Western blot method was used to detect the intracellular nuclear factor(NF-κB) IκBα phosphorylation(p-IκBα), p65 phosphorylation(p-p65) and protein expression of TLR4, TLR2. The results showed that the alkaloid components inhibited the production of NO, TNF-α, IL-1β and IL-6 in a dose-dependent mannerin the concentration range of 2.5-20 μg·mL~(-1). In inflammation upstream pathways, the inhibitory effect of the alkaloid components on the TLR2 expression level was weaker than that of TLR4. In inflammation downstream, alkaloid components significantly inhibited phosphorylation of IκBα and p65 in a dose-dependent manner. These data suggested that the alkaloid components were the material basis components of Corydalis Bungeanae Herba, and its anti-inflammatory mechanism might be related to inhibiting the transmission of inflammatory signals in TLRs/NF-κB signaling pathways dominated by TLR4, interfering with the activation of inflammatory genes and inhibiting their over expression, and down-regulating the secretion level of inflammatory factors.


Subject(s)
Animals , Mice , Anti-Inflammatory Agents , Therapeutic Uses , Corydalis , Inflammation , Drug Therapy , Lipopolysaccharides , NF-kappa B
SELECTION OF CITATIONS
SEARCH DETAIL